A view toward physical and biogeochemical ocean data assimilation at the sub-mesoscale

Andy Moore
Dept. of Ocean Sciences
University of California Santa Cruz
Outline

• DA at the submesoscale as an emerging challenge
• Phenomenology & processes
• Prospects for observing the submesoscale
• Challenges for data assimilation
The Ocean Submesoscale

(Munk et al., 2000; Thomas et al., 2008; Klein and Lapeyre, 2009; Lévy et al, 2012)
Frontal features are ubiquitous

Frontogenesis

Bergerson (1967); Hoskins (1982)

A field of mesoscale eddies

Strain-induced

Shear-induced

Conditioned by the mesoscale circulation
Evolution

Unforced

\[R_o \sim O(1) \]

\[L \sim 1 \text{ km} \]

\[U \sim 0.1 \text{ m s}^{-1} \]

“Eady” instability

(eg. Molemaker et al, 2005)

Buoyancy Forced

\[\alpha = N h_{ml} / f \]

(Legg et al., 1998)

Wind Forced

Ekman transport

(Thomas and Lee, 2005)
Ocean Biogeochemistry

Lévy et al. (2012)

Aggregation and Community Structure

Upwelling and downwelling

Phytoplankton (Lévy et al., 2012)
Zooplankton (Limouzy-Paris et al., 1997)
Birds (Tew Kai et al., 2009)
Cetaceans (Cotté et al., 2011)
Observing the Submesoscale

Lévy et al. (2012)

Remote sensing:
- SST
- Ocean color

In situ: glider
- Temperature
- Chlorophyll

Challenges:
- Short-lived (hours-days)
- Small scale (~1-10 km)
Observing the Submesoscale

HF radar (Shay et al, 2003)

SAR (McWilliams et al, 2009)

SWOT (NASA, CNES, CSA, UKSA) (15 km)

Ocean gliders, AUVs & drifters

Aircraft (hyperspectral imagers, altimeters, lidar)

NSF OOI (endurance arrays)
Challenges for Data Assimilation

- High resolution models
- Nested grids
- Complex non-linear circulations
- Inhomogeneous, anisotropic, flow dependent covariances
- Unconventional data types (SAR & visible images)
- Biochemical tracers have non-Gaussian errors
- Submesoscale time scales similar to IG waves (initialization?)
- Balance relations (SG, SQG?)
- Hybrid DA probably the way to go
- Var limited by tangent linear assumption
Challenges for Data Assimilation

• High resolution models
• **Nested grids**
• Complex non-linear circulations
• Inhomogeneous, anisotropic, flow dependent covariances
• Unconventional data types (SAR & visible images)
• Biochemical tracers have non-Gaussian errors
• Submesoscale time scales similar to IG waves (initialization?)
• Balance relations (SG, SQG?)
• Hybrid DA probably the way to go
• Var limited by tangent linear assumption
Gfactor = 3 Lmin = 45 Lmax = 137 Jmin = 42 Jmax = 126

DXmin = 0.777 DXmax = 0.78 DYmin = 0.775 DYmax = 0.778 Lm = 276 Mm = 252
Challenges for Data Assimilation

- High resolution models
- Nested grids
- Complex non-linear circulations
- Inhomogeneous, anisotropic, flow dependent covariances
- Unconventional data types (SAR & visible images)
- Biochemical tracers have non-Gaussian errors
- Submesoscale time scales similar to IG waves (initialization?)
- Balance constraints (SG, SQG?)
- Hybrid DA probably the way to go
- Var limited by tangent linear assumption